The Importance of Mathematics and Statistics in Engineering
Terrence Tsui \& R. Nazim Khan
Department of Mathematics and Statistics
The University of Western Australia

Contact Information:
Department of Mathematics and Statistics
The University of Western Australia
35 Stirling Highway, Crawley, Western Australia 6009

ics a barrier for students to complete an engineering programme? And ndly, is performance in mathematics associated with performance in engiNe id identified the significant factors associated with weighted average mark

Keywords: Importance of Mathematics, Engineering completion rates, High School mathematics enrolment, Student performance.

Introduction

- Mathematics and statistics is a fundamental and key skill for engineers.
Recently however, mathematics prerequisites in several university Recently however, mathematics prerequisites in severa
courses, including engineering, has been weakened [5]
- Many universities have softened their requirements for entry and this has necessitated an increase in the number of 'bridging courses'.
Australian Mathematical Sciences Institute (AMSI) examined 268 undergraduate engineering courses from 34 Australian universities and found 38% of them did not have any mathematics requirements and 53% required only a intermediate mathematics prerequisite [5]. This is a key reason for the decline in enrolments in intermediate and advanced mathematics in high school [6].
Figure 1 shows an overall decline in the intermediate and advanced mathematics enrolments since 2008. Between 2008 and 2011 the percent enrolment in Intermediate and Higher mathematics dropped by 2%. Enrolments remained fairly steady from then on, with a
slight increase between 2016 and 2018 . The large decrease in 2020 slight increase between 2016 and 2018. The large decrease in 2020
was due to Queensland changing its Year 12 assessment from wholly school-based to a 50% external examination.
Bell et al. [2] estimate that 50,000 engineers will be needed over the ext few years. They also deduces that the problem is compounded next few years. They also deduces that the problem is compounded
by fewer students choosing to study intermediate and higher level mathematics at school, and a decline in the number of students opting to study engineering.
In addition to a decline in the number of students choosing to study engineering, the retention rate in engineering course is low. Only 25% of students complete their study in minimum time, and only 50 to 60 percent of commencing students complete an engineering
degree [1].

Figure 1: Enelents in high school mathemaiss prentage of year 12 sudents taking intermediate and higher mathematics.

Main Objectives
This study serves to compliment current literature by exploring variables related to the high school and university mathematics. We explore the importance of mathematics and whether it affects perfor-
mance and retention of engineering students. This information is expected to inform universities and educators to implement strategies to help students and improve retention rates. Furthermore, it gives an Australian perspective to the current literature.
The primary aims of this project are as follow.

1. To investigate if performance in mathematics and statistics is associated with
(a) overall performance of engineering students.
(b) completion rate in the engineering programme.

To investigate student attitudes towards mathematics and their in sight on how effective mathematics is taught in engineering.

Methodology

- The data for this research is university student-records for students who enrolled in an engineering programme at UWA in 2013. Surveys of students provided the second source of data.
Interviews of individual students were conducted to obtain more detailed information on certain aspects of student attitudes towards engineering and mathematics.
The following statistical models will be fitted to the data.

1. A linear statistical model for WAM (Weighted Average Mark) [4]. 2. A log-linear model for completion of undergraduate Engineering Science degree [3].
2. A log-linear model for completion of the Masters in Professional Engineering (MPE) degree
A. A Principal Components Analysis based on the continuous variables in the data.

Results

Statistical Models
The following are the main findings based on the linear and log-linear statistical models.
A higher mark in first year university mathematics gives a higher WAM
2. A 1% increase in WAM increases the odds of completing the undergraduate degree in engineering by 22%.
3. Taking a second year mathematics unit increases the odds of completing completing the undergraduate degree in engineering degree by a factor of 2.5

The principal components analysis showed that:

1. students who perform well in mathematics in high school and university have higher WAM; and
. students who complete the MPE do well in mathematics in high school and university.
The cluster analysis showed that three clusters best represented the versity mathematics mark, with the clusters superimposed.

Figure 2: Plot of WAM against average university mathematics mark. Plotting char-
acter indicates MPE completion $(1=$ completed, $0=$ not completed) $)$ colour coded acter indicates MF
by cluster number.

The following are key findings from the cluster analysis.
The first cluster contains students who have a high WAM, most bove a 70. Almost all of the first cluster has completed their un-
dergraduate (92%) in engineering and a good majority (72%) completing their MPE. This cluster mostly contains students who took the advanced mathematics (MAS3CD) whilst also performing well in it with a majority averaging above 70 .
.The second cluster contains students with mid range WAM, between 60 and 80 . This cluster has a lower proportion of students completing their undergraduate (72%) and MPEs (60%) compared to the
first cluster. Students in this cluster took the advanced MAS3CD
(45%) or the intermediate MAT3CD (44\%) and have an average mark of between 60 to 80 in their high school mathematics.
3. The third cluster has students with lower WAM, with most below 60 WAM. The cluster also has low rates of completion, with 15% completing undergraduate and only 3% completing MPE
It is interesting to note that only the first cluster contained students with
a WAM of above 80 .

Survey Results

The main findings from the responses to attitude questions are:
1.71\% found mathematics enjoyable.
2.55.7\% found mathematics difficult.
3.90% agreed that mathematics is important for engineering
4. 80.3% said mathematics enhanced understanding of engineering.

For a student enjoys mathematics the odds of completing the unde graduate degree in engine
factor of 3.5 for the MPE.

Conclusion

-Performance in Mathematics at both high school and university is positively correlated with performance in engineering.
Completion rates for engineering are much higher for students who perform better at mathematics and for those who enjoy mathematics.
ainacs emances understanding of engineering.
4. Students who do not take the higher mathematics in High Schoo Mathematics is a barrier to completion of the engineering programme

References attributes and professional competences. https://www.ieagreements.orr/assets/Uploads/IEA-Graduate-Attributes-and-Professional-Competencies-2021.1-Sept-2021.pdf

[2] M Bell, P Briggs, J Romanis, and J MacMaster. Strengthening the shortage in the short, medium, and long term. Technical report, Engineers Australia, 2022.
[3] J. J. Faraway. Extending the linear model with R. CRC Press, Bo Raton, FL, second edition, 2016.
[4] J. J. Faraway. Linear models with R. CRC Press, Boc Raton, FL second edition, 2016.
[5] A Finkel, T Brown, J Wright, and M Wienk. Mapping university prerequisites in australia. Technical report, 2020.
[6] G Hine. "reasons why ididn't enrol in a higher-level mathematic cols. Ristening to the voice of australian senior secondary stu-

